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I In n n IM ihniM pt-rforinaiHe of iHiMiiim-ntMinal and axistnimrlrii tuned detU-clon. sMnmrlritallN situated 
with respevt to the impincinv jet. is analwed throut>h the use of I.etM i>ita's methaid. Helotserkotsk>°s intetirai 
method, and the finite element method. I he predicted results are shonn to he in reasonahle aureement with the 
a>ailahle experimental data. I !► rial Hind effeits smh as ( oanda effect, enlrainment. and du pressure ratio 
are discusM-d in the liuhi of the present imiscid HOH anahsev. 

Nomenclature 

.1. 

1 
4" 
i 

■ coctlictcnts 
= areas of subtnanglcs in a triangle 

area of a triangle 
= )et width or diameter 

win 
k 

I 

= revcrser geometry 
length of the normal. Fig. 6 

■ a function 
-I    II12 

= functional of it> 
il - a parameter 

= normal axis 

■/ 

t 

= pressure 
magnitude of total xelocity 
radial distance 

'. = no/zle radius 
H = radius of curvature 
K 

S/4,," 

= rcverscr radius 
axis along the free surface 

■ no/zle setback distance 
element matrix for element m 

S/.4," = loud matrix tor element m 
t 

1 

- a parameter. Fig 1 
= velocity components 

free streamline velocity 
■ normalized uniform velocitv in the nozzle 

H = complex potential 
\. v.: 

/< 
= coordinate axes 

deflection angle 
■ slope of the revcrser boundary, Kig 6b 

- 

0 

= a variable 
= area coordinates 

reverse-thrust ratio 
■ direction of velocity vector 

/ 
t> 
9 

(t> 
i./ 

• i 

■ a multiplier 
■ density of fluid 
= a variable. Fig 2 
■ potential function 
= stream function 
■ a complex function 

Introduction 
THE Huid dynamics of a free air or liquid jet invtngiing 

on a riitid or dcformahle surface poses problems ol special 
interest m the analysis of impulse machinery, thrust revcrsors. 
Hip buckets on spillways, rock and melal cutting with high- 
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speed w aler jets, lalse-tw tsttng of yarns, etc A complete discussion 
of the mechanics of the How situation would include the 
compressibility and gravitational effects, boundary-layer elTects 
at the viltd surface, and the entrainment effects at the free 
surface, but in most cases these are relatively unimportant, and 
it is sutficienlly realistic to assume the fluid to be invisctd and 
incompressible Even with this simplification, the prediction of 
the characteristics of the deflected |et may still pose exceedingly 
complex problems particularly for lets impinging obliquely 
upon prescribed boundaries. For example, the oblique impact 
of a round jet on a plane surface has not yet been aiialy/ed ' 
Thus, the analysis is often restricted to two-dimensional or 
axisymmi.-tric situations and recourse is usually made to approxi- 
mate nvthods of analysis where a free surface is assumed and 
its suitability is assessed from approximate potential solutions 
obtained through the use of various numerical techniques 

Thetwo-dtmensionalcounterpart of the let-detlection problem 
has been treated through the use of the powerful analytic- 
function theory and successive conformal transformations 
Sarpkaya2 solved the I -shaped, two-segment, deflector problem 
where the turning angle between the segments is limited to 90 
Tinney et al.'* extended this analysts to the case where the 
turning angle between the symmetrically situated segments is 
greater than 90 Later, Chang and (.'only4 presented an analysis 
for a bucket composed of a series of segments of arbitrary 
number, lengths, and angles However, the basic as well as 
practical problem of the direct and exact analv sis ol jet deflection 
by curved buckets remained unsolved 

The three-dimensional counterpart of the jet-dellection 
problem has not been solved in any generality Attempts to 
formulate an exact solution have been mostly unsuccessful even 
for axisymmetric inviscid Hows with no body forces The case 
of a circular jet striking a plate normally was analyzed by 
Sckadr using approximate methods similar to those of TrelTtz" 
with successive adjustment of the free streamlines Jeppson" 
applied the tinite difference technique to the solution of two, 
axisymmetric, potenfial-llow problems, namely to that of How 
from ■ nozzle and the cavitating flow of a let past a body 
of revolution Other noteworthy c.Mitributions to the analysis 
of the jet efflux from nozzles and orilices were made by 
Southwell and Vatsey," Rouse and Abul-Fetouh," (iarabedian,'" 
and Hunt" through the use of the relaxation and lintte- 
diflerence methods Schnurr et al." used the relaxation method 
to analyze the turning of two-dimensional and axisymmetric 
jets from curved surfaces where the jet was assumed to leave 
the deflector exactly parallel to the tangent at the lip of the 
deflector surface. The consequence of the difference between the 
actual deflection angle and the said tangent to the deflector 

l »mmlMmmtl' Mint oxnresscd in 
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mcnl.illv Thus. Iheir ;malyNis docs not constitute a solution to 
the thrust-rcuTscr problem 

Ryhming' 'studied the problem of a steady liquid jet impacting 
on a plane and on an infinite axisymmetric cavity by employing 
MMwkowkyV4 integral method As in the case of Schnurr et 
al. the results of this work do not apply to the thrust-reverser 
problem where there are two free surfaces and where the 
asymptotic slope of the deflected iet is not parallel to the 
tangent at the lip of the deflector surface 

In the present work three methods arc employed to investigate 
the deflection of mviscid. incompressible curved surfaces: Levi- 
Civitas method. Belotserkovsky's integral method, and the (imte 
element method The first method is applied to plane jets 
impinging symmetrically on two-dimensional curved surfaces 
whose shapes are specified in terms of a given jet-dellection 
angle and the angle of departure at the lip of the two- 
dimensional bucket The other two methods are applied to 
straight circular jets impinging on axisymmetric curved surfaces. 

Plane Jets andTwo-Dimensional Curved Deflector» 
The past as well as the present analyses have emphatically 

demonstrated that almost all of the dirticulties of the analysis of 
iet deflection from curved obstacles are ascribable to the deter- 
mination of the miliaily unknown free streamlines. In view of 
this fact | direct analysis of the problem, that is. the determina- 
tion of the jet deflection angle and the position of the free 
streamlines via either purely analytical or partly analytical and 
partly numerical techniques is at best a ditlicult problem 
As propounded b> Birkhofl and /arantonello.|S what one can 
hope for is an indirect solution of the problem, i e nbtaimng a 
family of obstacle shapes which will yield the prescribed jet- 
deflection angle and provide a familiarity between the shapes 
so obtained and the range and change of direction ol the tree 

parameters involved in the analysis This holds true for both 
the plane and axisymmetric flows Should one adopt a purely 
numerical procedure (eg finite difference, relaxation, finite 
element, marker-and-cell technique), it is then and only then 
possible to begin with a prescribed obstacle shape and to 
approach a unique solution through successive iterations 

It is well known from the free-streamline theory that whenever 
the solid boundaries are composed of straight segments, then 
the tl-plane alv) is composed of straight lines (see. e g . Ref I6l. 
Since such a polygonal boundary can always be transformed 
ontoa t-planethrough theuseofSchwarz-Chnstoffel transforma- 
tion, all two-dimensional |et-deflection problems of this nature 
may be. at least theoretically, solved However, whenever both 
the magnitude and the direction of the velocity vary along a 
rigid boundary, then the (i-plane is not in general composed 
of straight lines or of lines intersecting each other at suitable 
angles which would yield mtegrable transformations Con- 
sequently, one will either seek other methods of handling the 
curved boundaries or completely abandon the direct approach 
of obtaining a vilution for a given geometry The indirect 
approach seeks a family of solutions for a set of jet-deflection 
and departure-angle conditions and then lets the designer 
choose the one best suited to his needs. 

A relatively direct approach consists of rounding off of the 
corners of buckets otherwise composed of straight segments, 
(ienerally. this procedure results in a considerable complication 
of the mathematical problem and requires suitable analytical 
and physical simplilications The existing methods may be 
classified as follows Rounding off of the corners a) by assuming 
a constant pressure transition.1'' b| by assigning a special 
pressure distribution.1" c) by modifying the f-plane and the 
corresponding terms m the Schwarz-Chnstoffel transformation'' 
(a brief discussion of this method and the difficulties associated 
with it are also described by Carrier et al.).20 and linally. 
dl through the use of special transformations such as Riemann- 
Hilbert transformation.2122 hodograph-plane transforma- 
tions.2 ' etc As noted previously, some of these methods require 
the solution of complicated differential or integral-equation 
problems and some consist in lirst solving the problem with 
sharp corners and subsequently replacing the original boundary 
with a modified one having rounded corners Often the time 
and effort required to round off the sharp corners may not be 
commensurate with the need for a solution and it may be 
desirable to adopt an indirect approach where the shape of the 
curved boundary is not inilially known but obtained as part of 
the solution 

l.evi-( itila's Method 
Levi-Civita1 v2', may be said to have solved the inverse 

problem of describing the class of all two-dimensional jets 
divided by curved barriers Although no specific solutions 
have been presented, the problems of determining such flows 
were reduced in special cases2'-2h to the solution of nonlinear 
integral equations with appropriate boundary conditions The 
method has not previously been applied to the solution of the 
deflection of a two-dimensional )et from a finite two-dimensional 
curved boundary It consists of the delinition of a complex 
function dl as 

(M = f) + |LH(</Tj) (II 
and the delinition of the shape or the curvature of the obstacle 
in terms of the coefficients of a polynomial representing to. 

For the problem under consideration, the physical .--plane 
(see Fig. Ia| consists of a jet of width 2tl and velocity I, 
impinging upon a curved, symmetric, two-dimensional bucket 
BAB' The complex-potential function W is given, as usual, by 
W = (j)+iijt. A straightforward application of the Schwarz- 
Chnstoffel transformation establishes a relation between the I- 
and H -planes Thus, one has 

M = -(I'jd n)[LiH\ - 1)+ IM\ + D] (2) 
The parameter k in the f-plane is uniquely related to the 
deflection angle /' 
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Fhc upper hall ol the f-pl;inc i>< now translormccl mlo Ihc 
inner region of a semicircle ol unit radius (see hig Idl through 
Ihe Iranslonnation given h\ l.evi-C'i\itaJ4 as 

t= -M: + ; 'I : (3| 
The circular arc in   Fig    Id   represents   the  solid  boundary 
over »Inch the direction of the selocitv vector is assumed to 
be prescribed and the line BCDC'B represents the free steam- 
lines «here the magnitude of the velocity is known 

The functions H and o may be written as 

(11,»«/*'</.-! = (</ l>  * (4| 
and 

/       I </W\ 

(6) 

I, d 

which, in terms of, reduces to 

IX-linmg J = rexpl/ffl and noting that over the bucket only 
the argument and along the free streamlines only the ITUHIUIUS 

varies, the combination of f{qs (2) and (6) yields. 

:      I f 2k2 cos asm a , 
=     {<"'"" 2     Jo (7) 

i/     n \ \- k* cos'' a 
and 

»      I f khr2    r   2)2r 
,=    K      .3 , J ,      * («I </     Bj kUr + r   '|2 4-1 

where hq (7) gives the coordinates of the bucket and Fq (Xl 
the coordinates of the free streamlines 

The function !■> is assumed, according to l.evi-C'ivita. to be ol 
the form 

miO ■ UAH-:)/U + ;)] + ii„ + u^ + ni'S + ■ ■ W 
where the logarithmic term can be identified as that correspond- 
ing to a free let impinging normally upon a flat plate ^ The 
additional terms ill the polynomial whose coetficients are to l>e 
prescribed later modify the expression for n and give a suitable 
camber to the rigid boundary. 

Noting that nj. "*■ "(.. must be taken equal to zero because 
of symmetry of the How and that r = I over the solid boundary 
and rr = 0 or IT = TT over the free streamlines. Fq. (9| may be 
reduced over the bucket to 

cos <J\       n 
H(7| = il.n ± ~ +11,1'' 

I + sin ff     2 
+ </,<-,"' + «,f5," + (101 

where plus sign is to be used for n > <T > TT 2. and minus sign 
(or n 2 > c > 0. Over ihe free streamlines, hq (l>) reduces to 

2r 
(■)(rl Ian 

I 
-l-(/1r + <i,rJ + «5r,+ (III 

The coetficients if,. </,.... may now be chosen to obtain different 
bucket shapes. In this study a Kouner-scries representation was 
used primarily because of the versalility afforded by it in 
representing different bucket shapes. The evaluation of the 
coetficients requires a statement of the conditions at the tip and 
the a\is of the bucket Let the jet departure angle at the tip of 
the bucket be equal to ± n. and the curvature at the stagnation 
point be continuous 1 hen one has 

('<Ml)=     n.   mto*±1t/2   i'-.   <"(    ll^n,    M()( = () 

Ihe relationship between iHn) and a may be chosen at will 
Let this relationship be represented by a simple, symmetric 
variation  as shown  in  Hg   2.   Equation  (l()|  may  now   be 
written as. 

cos n 
vAn) =- IIJI : +ihifj) + 0{n) (12) 

I I sin n 

w here 

and 

/i((7) = ^«„sinnn,       n= 1,3.5. (13) 

II Oitr) =     (n 2)+ ^ii,cosnn 

The coetlicients ii, are givm by 

d, = [2 (IT,    rt.|n*](cosn IT,    cosn^i) (I5( 

in which a, and tf: represent the two parameters shown in 
Fig 2 For n - 0, </„ = - rt 2 as expected from the average value 
of Ihe function IHrry 

Fo complete the analysis one needs to evaluate the term 
exp [lolrri] which appears in Fqs (7) and (S) Writing. 

!■"•"" = [( 1-f sin ril cos a)],- '•"■'.."•"" (|6| 

and separating the real and imaginary parts, one has 

,■"■'" = (I+sin(T) u)s(7c """(cos^fD-nsint'tfT)]      (17) 

Combining Eqs (7). (13), (15). and (17| one has 

x . 2/v2(sin T)(I 4 sin n) 
sin tHn)dn 

and 

d     «l,2 

rl2A2(sinff|(l +sin(T) 

I - k2 cos2 a 
t:o\IHn)Jn 

(IS) 

(19) 

Equations (IS) and (ll>l yield the coordinates of the curved 
boundary through the use of the appropriate values of IT, 
and iTi This in essence completes the application of the F.evi- 
Civita's method to the analysis of the jet deflection from a 
two-dimensional curved bucket similar to that shown in Fig. I 

The deflection angle is evaluated by replacing in Fq (III 
the corresponding value of r at the point C. i.e . 

r = [l-(l -AV 2] A (20) 
The foregoing equations have been numerically integrated for 

a series of representative values of a, and n2 The resulting 
family of bucket shapes are shown in Fig. V A special case for 
(T, =0 31416 and fr2= 0.47124, and A = 0.,*46, (/< = 6X ), is 
shown in Fig 4. 

Fvidently, Levi-Civita"s method, with the novelties introduced 
into it in this study, is sutficient not only to generate a family 
of suitable two-dimensional curved reversers but also to round 
off the corners of buckets composed of straight segments. For 
example, by letting (rt, -fl-j)-»0. one linds that the bucket 
shape generated by this method exactly approaches that 
previously solved by Sarpkaya : For slightly larger values of 
(ffi - n:). the corner I'Q (see Fig. 4) is rounded ofl This enables 
one. for example, to evaluate the sensitivity of the deflection 
angle to the rounding off of the sharp corner on a ll-shaped 
bucket 

a «0.8 1.288 0.96 
b 31.7 0.974 0.98 

c 35.7 0.660 0.98 
d 43.6 0.346 0.98 

K/d 

12 1 0 

Fig. 3    Family of mo-diiiicnsinnal curved buckets lor 0.31416. 
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HE. 4     \ HfW luru-d hovkrl for n,      0JI4I6. T.     0.47124. k 
«.«m.,/,/     .V(I5./•./     1.07. and/'     «* . 

Iho present work mii\ be easily extended tu the .in.ilysis of 
the eases »here the lip tngle of the bucket is other than n 
or the bucket has a cusp on its axis of symmetrv or to the 
cases «here the impingmj! iet is not entirely free and emerges 
from a prescribed mwle 

\nalysisof Axisymmetric ( urved DeHeclor» 

As noted earlier, the three-dimensional counterpart of the 
iei-det1eciion problem has not yet been solved in any generality 
I he nnite-dinerenee and relaxation techniques suffer in general 
from convergence and accuracy problems and nearly all resort 
to simple tnal-and-error procedures to locale the free surfaces 
and to satisfy the boundary condition that the free surfaces 
be stream surfaces of constant velocity In the following two 
fairly new methods, namely BelotserkovskyV4 integral method 
and the finite element method are used to analyze representative 
axisymmetric cases 

Xpplicatiiin of ilu Brlol<trrkovsk>'s Method 

Firstly, the coordinates s and n along and normal to the 
unknown axisymmetnc free surface are chosen and the How 
region is divided into three /ones as shown in Hg 5. Zone I 
represents the nozzle and the oncoming jet. Zone II represents 
the iet sheet formed over most of the bucket, and finally. 
Zone III represents the deffected iet Zones I and II. and II and 
III are separated by the stagnation normal and the tip normal 
respectively 

Secondly, the functional forms of all the integrands appearing 
in the equations of motion are assumed and the equations are 
integrated to yield, through successive iterations, the relation- 

Kit;. 6    < oordinalr  axes  and  uvomelrieal  relations  a)   in   /.one   I. 
hi in /ones II and III. 

ships between the geometrical quantities describing the jet 
boundary and the values of the (low variables on the boundaries 

Dividing all velocities by the freestream velocity I',, all 
pressures by 0 5/4/. and all lengths by the nozzle radius r„. one 
writes in s-»i coordinates (see Kig. 6al with corresponding 
velocity components u and r the continuity and momentum 
equations for a steady, incompressible, axisymmetnc. inviscid 
How as." 

{ru)d*   (ruli, 
ds (■•:i (nl, = 0 (21) 

and 

>nii\Jn 
dh 

2(n(i I,      * 
rf.s 

R (2M- + p)(i)i + cos 0 (22) 

tig. $    \  lypieai asisymmvlric  bucket  and  ilu   drtinilion of three 
/ont-s of Ho» (S N    slaunalion normal. \//    lipnormall. 

where index /i means e\aluation of the quantity within the 
parentheses or brackets at n ■ h and R represents the radius 
of curvature in the meridional plane of the free iet surface 
In the derivation of the above equations implicit is the condition 
that /» = r = 0 at n = 0. 

A first approximation to the problem  is usually  obtained 
by assuming the velocities vary linearly with n. i.e.. 

i< = I    In /ml    IO.        r = (JI/DI,, (231 

where uk and r,, are the unknown values of u and i along 
the axis of symmetry in Zone I and along the rigid boundary 
in Zone II (sec Kig hbl Then Fq (21 )al the nozzle exit reduces to 

*-3i;-2 (24) 

For nozzles for which there is no back-pressuring effect due 
to the bucket proximity: i.e. for large values of s„ (see Fig 51. 
one has !„ = ufc = I. 

In Zone I. Fq (21) reduces to 

i„'i(2-n.),) = 3 (251 

and Fq. (22l takes the form 

d f* I f       , i*"/        n\ 
inntdn     „I   r(2iC!+p)(/(i + cos('j   11  «      \pJii=0 

(2bl 
K 
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Mrluch reduces ihroiigh ihc UM: ol the gteometneal relationships 
.uul I qs (2.<land(25lIo 

4 I     (i 

ID which   H and H arc functions of h 
previowi) jMu-n h> Ryhaung '' 

In /one 11. I qs l2lland I22I reduce to 

'12^ »rj • •(Jllr,. 2M 

and 
JO 

I'     . y   o 

(27| 

and I and  were 

I2SI 

(2M| 

in which /' and Q are functions of li. u,,, r» i> and (' ' ' 
In /one III. the equations derived for /one II hold true 

except that p = 0, everywhere, since u, = I and 

Ut = sinK*   .)| (30) 

lh*«M<f    ■>! (31) 

/ones I. II. and III are related b\ the conditions pertaining 
to the stagnation normal S.V and the tip normal Mf (see 
Kig 51. Noting that ai the stagnation point S. \ = 0. rk = 0. 
and i/» - 0 one has from lq (2«l. for the stagnation normal, 
the condiiion 

/i:cos/(= 1.5 (32) 

SinnlarK. noting that for the case under consideration <) = JT 2. 
(the tangent to the lip of the bucket is taken parallel to the 
v-aiis). one has. for the tip normal, the condition 

h2a cos (*   cW (() - }hrh(cos II - \) = } (33) 

I quation l32l delines a curve h = h(ll) on which the end points 
of all possible stagnation normals have to lie. which pass through 
the stagnation point S Fquation (33) defines a similar curve 
on which all possible tip normals lie. 

The foregoing equations were used to analv/e the detlection 
of axisvinmetnc |ets from buckets composed of a flat plate 
and a quarter circle as shown in Fig. 5 The calculations were 
performed as follows First, a deflection angle /( and the nozzle 
velocity l„ were assumed Then the thickness of the let DE = d. 
and the coordinates r, and r„ were calculated from the equation 
of continuity Obviously, d. r,. and r,, are subsequently 
recalculated on the basis of the iterated value of I', The point 
E is connected to the point / (the lip of the bucket) by a 
straighthne as a first approximation to the upper free surface 
and the line E.E is temporarily regarded as a rigid boundary 

The governing equations were programmed according to a 
standard Runge-Kutta sub-routine and then iterated as follows 
The calculations started at the tip of the nozzle where (' = 0 
and iih = 3l„-2 and proceeded along the free surface The 
coordinates of the free streamline, h. and (' were calculated at 
Mutable intervals Finally, a point was reached at which Fq 
(32). (the stagnation normal condition) was satisfied. Clearly, the 
stagnation normal can intersect the v-axis at a point other than 
x=0 and still satisfy Eq (32) Thus, it was necessary that 
v = 0 at f), = 0. i e.. the stagnation point must be located on the 
bucket To this end. the velocity V„ was iterated upon until 
both conditions [Fq (32) and x = 0 at r,, = 0] were satisfied 
Physically, this iteration corresponds to the first order calculation 
of the back-pressuring eflect of the bucket proximity on the 
nozzle flow 

Integration of the Fq. (2t)| in /one II begins at first with 
the vu. ru, h. 0. and R values calculated at the end of the 
/one I The free streamline calculated with these initial values 
define! spline shift (see Fig 7) due to the saddle-point character 
of the equations at the singular point Consequently, a sequence 
of points along the initial curve defined by Fq. (32) are chosen, 
and the corresponding integral curves are calculated. These, 
in turn, determine an upper and a lower bound for the proper 
location of the desired solution The process is then repeated 
until a sutlicienlly accurate bound is determined. The above- 
procedure requires about ten iterations. The consequence of the 
saddle-point character of the equations in the vicinity of the 

stagnation normal is that there is a sector ol overlap in the 
let.going upstrc.iin and downstream from the stagnation normal 
A similar behavior has been found previously with the 
Helotserkovsky method in similar situations using a first-order 
scheme"2^ Integration in /one II is terminated at the tip 
normal at which Fq ( >3) is salistied 

Tht determination of the shape and position of the deflected 
let in /one III requires three kinds of successive iterations 
I he first is the determination of the appropriate values of ^i and (' 
at the tip normal which satisfy Fq (33) and yield a sufliciently 
long poition of the integral curve hetAeen the upper and lower 
bounds This iteration yields a lower free surface with zero 
pressure and unit freestream velocity but the freestream condi- 
tions (H, = l./> = 0| at the upper surface are not yet satisfied 
since the upper surface was initially assumed to be a solid 
boundary Furthermore, the calculated stream surface does not 
necessarily coincide with the assumed lower free surface because 
the assumed let-dellection angle is either larger or smaller than 
the actual deflection angle This, in turn, requires an iteration 
on /( For this purpose, the point D is located on the calculated 
lower free surface and the new values of r,. r„. and J are calculated 
from the equation of continuity The rotation of ihc upper free 
surface constitutes a first-order correction to the deflection 
angle ß I hen the calculations noted above were repeated until 
the deflection angle did not change more than 2 This required 
Irom live to ten iterations depending on the initially assumed 
value of the let-deflection angle 

The third kind of iteration was made to determine the 
position and curvature of the upper free surface. As noted earlier 
EE was initially assumed to be a straight rigid boundary and 
thus the calculated tangential velocities along it were not every- 
where equal to unity, particularly in the vicinity of the lip of 
the bucket Then the points on the upper boundary were moved 
inward, along the n-axis if u, > I and vice verse by an amount 

An = ;(u,2-I) (34) 

in which z. is an assigned multiplier and u, is the previously 
calculated tangential «dodty. Fxpenence has shown that the 
iteration will converge even for a very crudely assumed boundary 
for a value of z. = 0.10. As to the reason for using (u,2- 11, it 
was simply for the purpose of accentuating the error and 
accelerating the correction of the boundary points at which the 
velocities most difler from unity At the end of each iteration, 
the corrected boundary was smoothened through the use of a 
generally available (T RVFFIT subroutine by jiassing a smooth 
curve through the calculated points and recalculating the inter- 
mediate points Then all three types of iterations on the lower 
and upper boundary were repeated until the velocities everyw here 
were within I ±0.05 The results of a typical case calculated in 
the manner described above is shown in Fig 5 in which /< = 
44.5 . 

t JO- 

Fig. 7    Spline shift in /.lint's II und III. 
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I it H    I IIIII<  lUimni rtpromlulHHv of Jrl dillr. IK.II from a hrmi- 
sphrrical rrtrrsrr. 

It is cvidenl from the foregoing that the Bc"lol>erkovsky's 
integral niethoii has certain limitations Firsth. the assumption 
of a linear velocity along s anil n ctHirdmales cannot be valid 
for all Hucket shapes and relative jet radii The variation of u 
near the free surface is rather large particularly for very deep 
buckets In such cases Belotscrkovsky's methixj may produce 
rather complex and physically unacceptable t1o» situations in 
the ucimty of the stagnation point Although no specific criteria 
can be developed for the bucket shapes to which the 
Belotserkovskv's method can be successfully applied, it may be 
recommended on the basis of the present study that the bucket 
radius bf larger than I 5r„ and the bucket depth be smaller 
than 2r„ Clearly, the specification of the radius of curvature 
alone at the stagnation point in terms of the |et radius is 
not sufficient As to the merits of the method, it is rather 
straightforward and yields, within the ranges of the parameters 
recommended, results which are sufficiently accurate for the 
calculation of the pressure distribution on the bucket and the 
reverser thrust 

\pplii jlmi, öl llu  I imu I Inmnl Ntrlhud 

Zienkiewic/ and Cheung2" proposed in hto.*» the application 
of the limte element method to the solution of field problems 
involving the equations of l.aplace and Poisson Since then a 
significant number of applications of the finite element method 
to fluid dynamics has appeared in the literature.'''' The method 
has recently been applied to several |et-etflux problems involving 
only one freestrcam surface and relatively small jet contraction 
by Chan1" and Chan and Larock " 

The present analysis is devoted to a determination of the 
angle of deflection, the location of the freestrcam surfaces, and 
the velocity and pressure distributions caused by a finite curved 
bucket placed symmetrically with respect to the axis of an 
axisymmetnc. inviscid jet issjmg from a uniform no//le 

The governing equation is then given by 

</>.„ +</),r + ^.r, = 0 (35) 

For an axisymmetnc flow, the solution to the Laplace-field 
equation satisfying the specified normal-velocity conditions (0,)" 
is given by that admissible function </< which mimmi/es the 
functional12 

/(4>l = t/'||   [((/)..l2 + (</>.,)2]rJr(/x~2n^ j   M+jfrtb 

m 
in which A is the half of a meridional section of the flow 
and C is a portion of the curve bounding this area where the 
normal derivative is prescribed The first integral in Eq. (36) 
represents the kinetic energy of the fluid within the entire 
control volume and the second integral represents twice the 
work done by the impulsive pressure /«/) on the boundaries in 
starting the motion from rest. 

The approximate minimization of the functional /(<M is 
accomplished by dividing the field of interest into N triangular 
elements, with corner and midpoint nodes, and writing 

■ 
/(<*» = En«/» (37) 

The variation of <li within each element is represented by a 
second-order polynomial The use of higher order polynomials 
leads to extremely tedious anlhmetical manipulations In terms 
of the area coordinates C, = A, A" (sec \ ig X). this leads to 

■K\^2<t>*+ KlZifa + KI s" J</>* (Jl) 
The velocity components arc given by 

i."--./«,"        and        i;m = (t>,m (W» 

The substitution of l-qs. (3K) and (34) in hq. (36) and the use 
of the Rit/ technique yield, 

r/-(^) <>," ■ SA,r<t>r - SLA," m 0 |40| 
in which SA,* and SLA," represent respectively the element- 
stiflness matrix and the corresponding load matrix for a tri- 
angular element Chan and Larock" who tabulated .S'.-),/" and 
SLA,", assumed, in the derivation ol the matrix S/.4", a 
constant normal velocity on a boundary side of an element 
This condition which conflicts with the linear interpolation ol 
the veli)city field has been relaxed along the lines recommended 
by Kotchergenko and Amorim" and the coefficients Si.,1," 
have been corrected accordingly 

(Itraiiiin V hiiiu 

As cited earlier, the deflected jet is characten/ed by two 
initially unknown axisymmetnc frwstream surfaces Thus special 
attention must be focused on finding a suitable iterative 
procedure for systematically approaching the final positions 
of the boundaries The iteration is terminated when the boundary 
conditions are satisfied within a prescribed absolute maximum 
error The boundary condition to be satished is that the free 
surfaces be streamlines >)f constant velocity 

The grid is divided into two major regions The tirst region 
consists of elements whose coordinates are fixed once for all 
(see Figs X and *)). This region is well within the interior of the 
flow and is not expected to be intersected by the freestrcam 
surfaces. The second region, ie the moving grid, consists of 
elements whose coordinates are recalculated each lime the free 
surface is moved The movement of the grid is made in such a 
manner that each clement maintains a shape more or less 
cumpatible to its original shape The grid inside the exiting 
jet (along FE in Fig 4) is relocated by moving each middle 
node to its correct position between two opposite nodes on 
each side of the jet. (see Fig. 8). In regions of high velocity, 
relatively small triangles and in regions of rather low velocity, 
larger triangles are used The examp'- shown in Fig. 8 contains 
2SK elements and 683 nodal points. The bandwidth was 60 

Iteration of the free surfaces began with the assumption of a 
deflection angle /( and the sketching of the two free surfaces 
as carefully as possible on the basis of past experience Then 
the assumed boundaries were regarded as rigid boundaries. The 
nozzle length was varied from 2r„ to 6r„ and the jet length IE 
from 0 6r„ to r„ in various programs with no noticeable difference 
in the results. The thickness of the jet DE = d. and the radial 
coordinates r, and r,, (see Fig. 9) were calculated from the 
equation of continuity by assuming f„ = I. Obviously, d. rt. 
and r,, are subsequently recalculated on the basis of the iterated 

Kig. <>    Half nuridian plane of v\ (km and the Ino grid system. 
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\jlues of l„ The point E ts amnettcd to the rK>int F by a 
straight line as a tirst approximation to the upper tree surtace 

I he tirst run through the computer calculates the velocity at (' 
(see I-ig l'l. le. at the lip of the no//le It turns out to be 
larger than unity (the correct \alue is I, - 11, since l„ is assumed 
to be equal to unit) l„ is immeüiatel> corrected, to a tirsl-order 
of approximation. b> writing 

l,k= V,*  "-(K"   "-III."   " Mil 
which is used in all subsequent iterations Then r,, r,,. and tt 
are recalculated as in the case of the application of the 
Bclotserkovsky's method 

The procedure which has enabled the assumed boundaries to 
converge in a systematic manner to their final positions may 
be described as follows I.et the velocity at an arbitrary point 
along the assumed boundary be I,. Then the boundary is 
moved inward, along a line normal or nearly normal to the 
boundary, if l, > I and vice versa by an amount 

Än = >.(i;J-l) (42l 

In these calculations, the multiplier / was taken equal to 0.015 
At the end of a given number of iterations, the velocities 
along one or both boundaries may approach values other than 
unity because the assumed deflection angle is not necessarily the 
correct one Clearly, the deflection angle adjusts itself at the 
end i>f each iteration but this adjustment is rather small (about 
0.2 ). Thus, for a large correction in /(. say 20. about 100 
iterations are needed Instead, live iterations were carried out 
for the assumed deflection angle and then /( was incremented 
by 2 , clockwise or counter-clockwise dependi g on whether 
the velocities in the upper free surface was smaller or larger 
than unity When the velocities everywhere were within I +0.05. 
/( was no longer incremented by 2 and the number of iterations 
was increased to 25. The calculations were terminated when the 
velocities everywhere were within 110015. The entire iteration 
for a given no//le-reverser geometry required approximately 
M) mins on an IBM-3N) 67 computer The program was written 
in FORTRAN and double-precision arithmetic was used 

Kxampies and Results 

The method and the procedures described above have been 
used to analyze the characteristics of axisymmetric-jet deflection 
from hemispherical (see Fig 8| as well as fairly shallow (sec 
Fig 5) target-type thrust rcversers This type of reversers give 
the desired amount of reverse Ihn w ithout affecting the engine- 
operation and lend themselves stowage with a minimum 
amount of boattail oi base drag 

The geometry of the mv/le-reverscr combination is uniquely 
detined by the ratios R„ r„ and v„ r„ (see Figs 5 and '>! once 
the bucket and no/zle shape are decided upon. It is clear, at 
least from the npariMalt1* that there is a unique combnuition 
of R„ r„ and s„ r„ for which the reverse thrust is maximum 
The determination of this combination and the calculation of the 
resultmu thrust constitute the essence of the practical problem 

In the aircraft industry, the etliciency of I thrust reverser is 
expressed in terms of a "reverse-thrust ratio" i;« detined by the 
ratio of the actual reversed let thrust to the forward jet thrust 
of the no/zle alone In other words. »;„ is given by 

'/« = CW,.2 K l]cos ininpr^V/) = {VJV,)cos /i (43| 
Fvidently. »;Ä = ';»<'<., r„. s„ rj since both l„ and /( depend on 
K„ r„ and s„ r„ for a family of geometrically similar reversers 
In passing it should be noted that the error made in the 
calculation of r(K by assuming the jet leave the deflector exactl' 
parallel to the lar.gent at the lip of the deflecor. i.e.. by 
writing /i = 0. as v <is done by Schnurr et al.. would be 
(assuming l„ rem; ins relatively unaffected) nearly proportional 
to II -cos/<) This error could be rather large particularly for 
large angles of deflection and its correction through the use of 
another arbitrary parameter such as the "spillage coetficient" 
introduced by Schnurr et al.12 is not justttied Fvidently. the 
correct calculation of thrust requires the determinatic" of the 
deflection angle 

The results of the tinite element analysis and their comparison 
with those obtained experimentally are presented in Table 1 
together with those obtained through the use of the 
Bclotserkovsky's method The experimem..' values of i;Ä are 
somewhat larger than those obtained numerically There are 
several reasons for this difference; the two most important 
ones being the C'oanda effect (see. e.g. Ref ?5l and the no/zle 
pressure ratio The Coanda effect, i.e.. the tendency of a jet to 
attach to adjacent surfaces (in this case to the outer surface 
of the no//lel because of the entramment deprivation, decreases 
the deflection angle and thereby increases the reversed thrust 
In 'h.« experiments conducted by Steffen et al.'4 the outer 
surface of the no/zle v is streamlined in the form of a boattail 
to decrease entrainme.it and thus to increase t/« In fact, as 
noted by Steffen et al.. ■"ttie pressure reductions on the boattail 
were large enough to account for as much as 20",, of the 
.everse-thrust ratio " Thus the relatively large differences between 
the I/R values experimentally obtained by Steffen el al. and 
those predicted numerically are primarily attributable to the 
Coanda effect. 

The present experiments were conducted with a straight, 
sharp-edged nozzle (r„ = 1.32 to 1.57 in.. R„ = 2.5 in I and the 
eflect of the jet attachment has been minimized. This has 
resulted in a closer agreement between the computed and 
experimental values of );R. In passing it should be noted that 
the Coanda effect is not necessarily desirable, in spite of its 
contribution to the reverse thrust, for it may cause an unstable 
flowlield and destructive vibrations. 

The nozzle-pressure ratio or the actual velocity in the nozzle 
causes variations in i/K primarily because the entrainnuni needs 
of the deflected ict and hence the Coanda effee' increase with 
increasing jet velocity Consequently. >}K increases (about 10 
percentage pointsl over a range of nozzle-pressure ratios from 
1.7 to 3. 

Table 1 shows that the relative spacing of the nozzle and the 
reverser size sigmlicantly affect the flow reversal  Fvidently. ijn 
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MKHMM.^ wilh an increase m hemisphere diameter .trnJ reaches 
I iiMVimnni i>( .ibt)ul SO'',, lor H. r„ -• I K and N„ r„ UM) 
This nearl> k.i)rreip»>nds to an optimum no//le-reversei spucinu 

I ucnaiwc etpcrinenlai data ohtamed b\ Stcflen ct al u ''' 
with Nannus ivpcs of KWMn clcarl> show that at spaangs 
(■rcator than thai rojuired lor opinnuin pcrlormaiKc. »;« III.I\ 

drop as much as ^f'., Closer spacing!) do not noiiccabh 
affect Ihc revcrser performance hut result in decreased tlou 
rale lor a given total nozzle pressure or in increased pressure 
tor a gnen IM rale because ol the increased ModtafB or 
back-pressuring effeel o( ihc reverser 

( Olli I US lolls 

rhougfa the cc|iialioiK lor lets Impinging on curved surfaces 
are not inleKrablc m a closed form, the behavior of their 
■otuttoni is prcdiclabie through the use ol numerical methods 
f-or two-dimensional cases, the Levi-Civita method provides a 
\ariet> t>l bucket shapes and enables one to round off the 
sharp corners of buckets otherwise composed of slrai^lil 
segments t-or these cases, the finite element method could also 
provide direct solulions lor prescribed boundarv shapes 

I he Belolserkovskv and finite element methods mav be used 
with confidence for the analysis ol an axisvmmetric Laplace 

field where one or more parts of the boundarv are to be 
determined as pari of the solution In particular these methods 

are capable of predicting the ideahzed-performanot charac- 
teristics of avisvnimeinc thrust reversers fvidentlv. some of the 
practical problems associated with thrust reversal, such as (he 
reattachment of the jel to the nacelle of the engine, hot-gas 
remgestion inleraciion of the dellected iet with the ambient 
stream, noise intensification, etc. require additional analytical 
■ad evpenmenlal investigation 
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